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A CURVED FINITE ELEMENT FOR THIN ELASTIC SHELLSY

G. Duruis} and J.-J. GOEL§

Ecole Polytechnique Fédérale-Lausanne, Department of Mathematics,
33 av. de Cour, Lausanne, Switzerland

Abstract-—This paper is concerned with a curved triangular finite shell element, which represents the rigid-body
motions exactly and assures convergence in energy. The stiffness matrix is derived in a general way that is valid
for all mathematical models which accept Kirchhoff’s assumption. A numerical example is presented to indicate
the quality of results that can be obtained with 9 or 18° of freedom at each meshpoint and basic functions of
classes C! or C%.

1. INTRODUCTION

THE APPLICATION of the finite element method to shell problems has been the object of many
papers. Leaving aside cases which are essentially one-dimensional by symmetry considera-
tions, problems may be classed in three groups.

1. The most widely used method replaces the shell by a polyhedron and treats each
face as a plate element (see [1-5]). Approaches of this kind differ from each other by the
choice of shape functions and by the connections imposed between the elements. Note that
these connections concern the nodal displacements and do not automatically ensure
continuity of displacements along the sides of the elements. Some comparisons with exact
solutions show that, in many cases, approximations of this kind are sufficient for engineering
purposes. It should be noted, however, that this approach is without any mathematical
support. It is not justifiable as an application of Ritz’s method, because the functions used
do not have the required continuity. Moreover, the relation to the general theories of thin
elastic shells is tenuous, because these theories concern shells with smooth middle surfaces.

2. Another method treats the shell problem as a three-dimensional one, and uses
curved finite elements which are called isoparametric (see [6-8]). This procedure, which is
esentially used in arch dam problems, is primarily reserved for the relatively thick shells.
In the same way, Ahhad [9, 10] proposed a method, in which the thickness of the shell
plays a privileged role with respect to the other dimensions of the elements. This method,
however, does not seem to be satisfactory when the shell becomes thin.

3. Some curved finite elements based on two-dimensional shell theory have been used
{see [11-15]). They do not however, assure the continuity of displacements, or displace-
ments derivatives, along the sides of the clements and do not represent the rigid-body
motions exactly. Some numerical investigations concerning beam problems show that the
last condition is essential for good numerical results. This remark has been confirmed
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theoretically in [16]. Contrary to what has occasionally been stated in the literature, the
condition that rigid-body motions should be properly represented is essential, not for
convergence in energy [17], but for acceptable rate of convergence. If this condition is
fulfilled, it can show that the stresses and reactions computed from the approximate dis-
placements assure the equilibrium of the shell, and this is, of course, of great practical
importance.

In this paper, we construct a triangular shell element that guarantees convergence in
energy and satisfies the condition of rigid-body motions, according to the following state-
ments :

1. The unknown functions are the Cartesian components of the displacement.

2. The middle surface of the shell in both the undeformed and deformed states are
defined, in Cartesian coordinates, as linear combinations of the same set of basic
fanctions.

3. The strain energy vanishes exactly for all rigid-body motions of the middle surface.

4. The basic functions satisfy the conditions for convergence in energy.

In the following we shall make use of three types of basic functions; with one of them,
the continuity conditions for the stress field are automatically satisfied.

Various mathematical models that are based on Kirchhoff’s assumption differ in the
expression of the extension and bending strains and in the constitutive equation. One of
these models is therefore characterized by the matrices A and B of the strain—displacement
equations, the matrix K of the stress—strain relation and the boundary conditions. In fact, in
view of the variational formulation, a model is completely defined by the three matrices A, B
and K. The kinematical conditions are the same for all models of this class and the statical
conditions are the natural boundary conditions of the variational problem.

We shall consider here the model proposed by Koiter (see [18, 19]), which is brietly
surveyed in the second section. In Section 3, we obtain the expression of the strain energy
in Cartesian coordinates, from which we form the matrices A, B and K. Section 4 deals with
the discretisation of the boundary value problem while Section 5 shows how to form the
stiffness matrix of the element. An illustrative numerical example is given in the last section.

2. BASIC EQUATIONS

We give below an abstract of the basic equations of the Koiter’s theory of thin shells
(see [18, 19)), using the usual notations of tensor calculust (see, for example, [20]).

Let T be the middle surface of the shell, defined by the equationr = r (6%, 6%);a, =,
the base vectors; a; = a, xa,/]a; x a,| the normal to Z; a,5 = a,. a5 and b,y = 3(a, 5+
a;,).a; the two fundamental quadratic forms on X. The shell considered is the volume
defined by theequation R(8?, 6%, 6%) = r(0', 6%)+ 0a,, where(0*,6%) e D, —h/2 < 67 < h/2;
D is a domain of the plane (6, 6%) and h is the thickness of the shell.

The displacement of the middle surface X is defined by the vector field

v =v,a"+wa,, (1)

where a* = a*a; are the contravariant base vectors and (a*)) = ((aa,,))*1 is the contra-
variant tensor metric. It is convenient for the following to introduce the antisymmetric

+ In this paper, Greek indices have the range 1,2, a single stroke stands for covariant differentiation with
respect to the surface metric and a comma denotes partial differentiation with respect to 0.
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tensor
Wy = %(vﬂa - valﬁ) (2)

which expresses the rotation of the middle surface around the normal. After deformation,
the normal a, becomes the vector i; = a;+u,a*; Kirchhoff s hypothesis yields the relation

Uy = — (W + bivg) (3)
The deformation of the shell is characterized by the two symmetric tensors
Eap = 2Uyp + Vpja— 2bogW),
Pop = %(udiﬂ + gy, — bjeog, — bje,,)

which respectively represent the extension of the middle surface and the variation of its
curvature. The strain parameters have a very simple intrinsic significance. Let us calculate
the two fundamental forms 4,5 and b, on the deformed surface Z; keeping only the linear
terms in the displacement, we get

4)

sa.ﬂ = %(auﬂ - aaﬂ)a
Pag = “{Baﬁ - baﬂ) +Jf(bzgﬁy + b;};gczy)

These relations show that, by a fundamental theorem of differential geometry of surfaces,
strains vanish identically for all linearized rigid-body motions of the middle surface.
In the considered model, the strain energy density has the form

(5)

| G h?
W = ‘2—Ba hsaﬁayﬁ +ﬁpuﬂp)‘5 »

where (6)
B¥#7 = G(a*aP? + a®?a® + 2v/(1 - v)a*fa’®)

with G = E/2(1+v), E being the elastic modulus and v the Poisson ratio. It is shown in
[18] that, within the three-dimensional theory of elasticity, the expression (6) is a consistent
approximation with the hypothesis of the conservation of normals. The strain energy of
the shell is

U1=JLWd0' (N

The state of stress of the shell is characterized by the symmetric tensors n*¥ and m*, defined
by

n = oWjoe,;,  m* = 0W/op,, (8)

n*? and m* are the two-dimensional membrane and bending stresses. From relations (6)
and (8), we find the constitutive equation

h3
yé> maﬂ = ﬁBam’&pyé (9)
The external loads acting on the shell are a surface load of density p = p*a, + pa;, applied
to the middle surface Z; a line load of density q = ¢*a,+qa; and a couple of density
m = m,a’, both applied to the boundary I' of Z. The line force and couple are givenon I'; ;

n® = hB"g
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they are reactive forces on I',(I' = I'; U I',). The potential of external loads is given by

U, = ff (P, +pwido+ f (q%v, +qw +e*umy,) ds {10
> r

where e* is the antisymmetric tensor e'? = —e2! = 1 ia, et =e?? =0,
The relations (7) and (10) define the potential energy of the shell U = U, — U, . that is
the quadratic functional of the displacements v, and w

i B h?
Ulv,, w] = f f l:zB“ﬁaé(}’lSaﬂél},é + i—’;pdﬁpyé) —(p"n, +pw)1 do
z <~ .

— J; (@7, +qw+e*u,my) ds (11)

in this expression the components of the rotation u, are defined by (3) and the strains Eap
and p,; by equations (4).
The position of equilibrium of the shell is defined by the condition
oU =0 {12a)
and by the geometrical boundary conditions on I',. In the three simplest cases, these
boundary conditions are

v,=0, w=0, u,=0 along a clamped edge, where u,, is the normal

rotation ;
v,=0, w=0 along a supported edge; {12b)
no kinematic condition along a free edge.

From relations (12) there follow the equilibrium equation in D, the natural boundary
conditions on 0D, [image of I'; in the plan (6%, 6%)] and the forces of reaction on dD,. The
equilibrium equations so obtained coincide with the exact two-dimensional equilibrium
equations given by Green and Zerna [20], if the tensor m* is supposed to be symmetric.
It follows that the stresses solution of our boundary value problem ensure the equilibrium
of all parts of the shell defined by (0',0%)e B = D. —h/2 < 6% < h/2.

3. STRAIN ENERGY IN CARTESIAN COORDINATES

Let (x,, X, x3) be a system of Cartesian coordinates, we define the middle surface =
by the equation x3 = x3(x,, X,) or r = r(x, X,), with r7 = [x, x,, x3(x;, X,)]. In order to
simplify the writing, we shall use in the following the notations z = X3, 2, = X3 ,. 2,5 = X34
The base vectors on X can be written in that case

; . 1
aj =(1,0,z), a; = (0,1, 2,), aj :%(~21,—22,1) (13)

with a = 1423 +z3. One deduces from them the two fundamental forms on
(14

- Zap
aaﬁ == aa‘aﬂ = OaB+ZaZﬂ’ baﬂ = aa“B.a:; = ‘j;

where J,; is Kronecker’s symbol.
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Let u,, u,, u3 be the Cartesian components of the displacement,} the deformed surface
T is defined by the equation T = t(x,, x,), where T = [x; +u;(x;, X3), X, +uz(Xy, X),
z+us(x,, X,)). On I, the base vectors take the form
al = (1+uy,1,up,0,2, +3,), (15)
ay = (uy,, 1+uy 5, 2,43 5);
from this, we can find the fundamental forms 4,; and b,;. On keeping only the linear terms
in u; and their derivatives, we get
Aap— up = Uy g+ Ug o+ 2,13 5+ ZpU3 45
B ap a,p B B 3. (16)

1
baﬂ - baﬂ = % [Zaﬂ(zyzluy,). - Zyu3,y)/a — ZUyap + u3,aﬂ]'

Formulas (5)and (16) define the strains as functions of the displacement. Let us introduce
the following notations :

g’ = (€115 €225 €12) PT = (P11> P225 P12)

22 12)

nT = (n't, n?2, n'2), mT = (mll, m22,m12);

and let @} be the symbolic vector of dimension n(n = 3 or 6), defined as
8T = (1, 0x,, 0x,, 0x,0x,, 0x,0x,, 0x,0x,);

2 will be the three first components of this vector. If no confusion is possible, we shall write
@" rather than 0% ; in the same way, we shall omit the subscript n if it is not necessary to the
understanding. The notation J, will be the kth component of this vector. With these nota-
tions, the strain parameters can be set under the form

ou, ou,
€= (AI’AZ’ A3) auz = A auZ 5
Ou; Ous
(17)
ou, ou,
p= (Bl,Bz,B3) auz =B 3u2
ou, Ou,

where @ is written for 8% and the matrices A and B, of dimension 3 x 18, are the functions of
Z, Zy, Z4g given in Table 1.
Let us introduce in (6) the contravariant components of the metric deduced from (14),
we get for the constitutive equation (9)
n = C,Kg, m = C/Kp (18)

where K is the 3 x 3 matrix given in Table 2 and C,, = Eh/(1—v?), C; = Eh3/12(1 —v?). The
physical components of stresses, that is to say, those relative to unit base vectors, are

— b _
Mgy = N*Cp), Magy = Mg (19)

T Care will be taken to not confuse the Cartesian components of the displacement and the rotations defined
by equation (3), which will not appear in the rest of this paper.
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TABLE 1
1 0 i
0 0
0 12 |
0 0
0 {
1/2 0
7, 0
0 z, ]
|
2,/2 /2 i
—z1.2} TE112122 azy
+ oy +oy/2
~ 23,7} T Z32Z2123 azy
+ay/2
_2123% T 2122123 4y
+ /2 + (o +az)/4
]
|
—Z312122 _21125 {
+o0,/2 az,
2
—23321Z; 23223
+o00e/2 +a; azy
—Z12Z122 — 21223
oy +az)/4 +o3/2 4z,
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TABLE 1—(continued)
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2112y Z1123

+oyzy +ay2,/2 -1
+0ay2,/2

Z222y 23223
+042,/2 + o3z -1
+o,z/2
21221 Zy22y
+o42y/2 +0y2,/2 -1
(o +a3)z/4 | +(oy +03)z,/4

- 2 .
ay = (1+23)zy1 — 23252453

- 2 .
ay = (1+27)235+2123245;

— 2 .
oy = (1+2z7)212— 21252145

oty = (1+23)23—2122225.

where ¢ 1, = /[a(1 + 21 +23)], ¢y = [a(1 +23)/(1+2)], ¢12) = /@ Both formulas
(19) must be understood without sum on the indices « and B.
The strain energy of the shell can now be written as

where

1
v,=3]

3
Y 0TuR;du;/adx, dx,

Dij=1

(20)

(21)

is a 6 x 6 matrix only depending on the geometry of the surface (the functions z, z,, z,5) and
on the elastic coefficients C,, and C;; D is the projection of the shell in the plane (x,, x,).
In the same way, we could find the expression of the potential of the external loads, in
Cartesian coordinates.

4. DISCRETISATION OF THE PROBLEM

Let us divide the domain D into triangular elements, approximating the curved parts of
dD by straight segments ; we denote by D the polygonal domain so formed and by dD its
boundary. Let N be the number of nodes of the mesh ; D; the domain formed by the triangles
admitting P, for vertex (see Fig. 1) and {(x,, x,)n functions associated with the node P,,

TABLE 2

(1+23)?

(1—v)22z}
+v(1+z3H)(1 +22)

—2(1+23)z,2,

(1-v)ziz3
+v(1+z3)(1 +z23)

(1+23)?

—2(1 +23)z,2,

— 21 +23)z,2,

—~2(1+z%)z,2,

200 —v)(1+zH)(1 +23)
+2(1 +v)z2z3
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having the following properties :

1. They vanish outside of the domain D,.

2. They verify the conditions 0,,(P;) = J,;0,,, where y,, is the Ith component of the
vector ;, 0 is the kth component of 8}, P; is a node of the domain D and J;; the Kronecker
symbol.

3. The functions \; are of class C' with piecewise continuous partial derivatives of
second order and square integrable. They satisfy the conditions of convergence in energy,
relative to the variational problem of second order. These conditions are given in [177:
we recall them for the clearness of the following.

The basic functions {; assure convergence in energy of variational problems of second
order, if and only if, for all polynomials of second order Q(x,, x,), one has the relation

0TQ(P) ixy. x;) = Qlx;, x,) (22)

M=

i=1

It

In particular, this relation is of course verified for all polynomial of the first order in x, , x,.
In the following, we consider a shell whose middle surface is of the form

2(Xy, x,) = z Zg‘—"’i(xpxz) (23)
i=1
where z, = 8z(P). Practically, one gives the vector z; at each meshpoint of the domain D,
which entirely define the surface. On the other hand, for our variational problem, we
restrict the space of the three unknown functions u, , u,, u; to be a space of finite dimension,
of the form

N
ui(xlaXZ) = Z aTui(Pj)'\l’j(xl’XZ)! (l - 13 23 3) (24)
j=1
With such a choice of admissible functions one can represent exactly the rigid-body
motions of the surface. Indeed, a linearized rigid-body displacement may be written
i = uy+ o x(r—ry), wherer” = [x,, x,, z(x; , X,)]; the components of {i are therefore of the
form @i; = ag+a;x, +a,x; +asz and, for such a function, one has the equality

N
aTﬁi(Pj) . \I’J{x1 , Xa) = di(Xy, X3)
=1

J

The proof is immediate: set #i; = v+a,z, v is a polynomial of the first order in x, x, for
which we have the relation (22) and, from its definition, z(x,, x,) has the form (23).
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Besides, we show in the second section that the strain energy vanishes if, and only if,
the middle surface of the shell undergoes a rigid-body displacement. It follows that the
formulas (23) and (24) represent the rigid-body motions of the shell exactly.

It is convenient for the following to restrict the functions §; on an element. Let A be
the triangle of D, admitting the vertex P,, P,, P, and let us note v(x, x,) a function defined
on A by the formulas (23) or (24). In order to lighten the writing, we introduce the vector v,
relative to the element A, defined as

vl = [0Tu(P,), 8Tv(P,), 8" v(P))]

If we denote by §{x;, x,) the 3n functions ¥, ¥, , defined in A only, then v(x,, x,) takes
the form

v(xy, X5) = Vd(xy, X3) (25)

Now, let us consider a linear mapping such that the triangle P,, P,, P, of the plane (x, x,)
is mapped on the unit triangle of the plane (£, &) whose vertices are (0, 0), (1,0), (0, 1)
(see Fig. 2), defined by

(xl) _ C(él +(x17 ,
X &2 X2p
Xg Py &2
(0,1
g
PS
X (0,0} (1,00 &
FiG. 2.
where {206)
C = Xis— Xgr Xy —Xgr

Xgs— Xz, XX,

(x4, X5,) being the coordinates of the node P,. We have pointed out in [21] that the functions
¢ relative to the triangle A, can be put under the form

dlxr, x,) = THE,, &) @7

the set (x,, x,) and (&, £,) being Einked by the relations (26). The matrix T characterizes
the geometry of the triangle and (&, &,) are some functions defined on the unit triangle
of the plane (£,, &,). The functions of the form (25) can therefore be written as

wxy,%5) = vVITHE,, &) (28)

The functions §{&,, £,) are called basic functions of the plane (¢, &,). In the following,
we shall use the three types of basic functions given in [21] and summarized in Table 3.
For our variational problem, they define the sub-spaces of admissible functions of dimension
18N, 18N and 9N respectively.
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TABLE 3

Parameters associated Dimension

Type n at each node of the functions t'f) Class
(vector v) matrix T
. Uy Uy, Ugya Uy, . . IR
T1 6 v ! L ! {8 x 30 Rational functions [
- [N N N 5 Polynomials of the .
12 o [ 18x 31 Sth degree ¢
T3 3 Uty 9x 12 Rational functions -

Remark

Koiter’s model reviewed in the second section only involves the derivatives of second
order of the function z. Of course, basic functions of class C' are sufficiently regular in this
case. However, in some other models (for example, that given by Green and Zerna [20]),
the expression of strain energy in Cartesian coordinates, make use of the derivatives of z
of third order and there, it is necessary to use basic functions of class C?.

5. DERIVATION OF THE STIFFNESS MATRIX OF AN ELEMENT

We now propose to calculate the contribution of an element to the strain energy (20},
restricting the admissible functions to those of the form (24).
The contribution of the element A is

3
AU, = j 2 OuR 0., adx, dx, (29)

Aij=1

with R;; = C,ATKA;+ C,B{KB,;. Let us effect the change of variable (26) in the integral (29).
One has the formulas of derivation

where S is a 6 x 6 matrix depending on the geometry of the triangle A, given at Table 4,
with the notations

ty = (X3, — Xp,)/J, ty = — (X — X0/,
13 = —(x25— X )/J, ta = (X 5— X1, )5

J o= (X=X ) (X~ X2,) — (X1, — X1, ) (X5~ X2,)

TaBLE 4
o
I8 13
I 1y
S = X

i7 13 2415
i3 1 2ty
A
5 f3l, +1,0;
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being the Jacobian of the transformation. Substitution of (30) into (29) gives
AU, = J.f aTuR, 8, alJ) A€, dE, (31
i } 1

where R;; = C,ATKA,;+C,BTKB,, with A; = SA,; and B; = SB;. Let us now introduce
the admxssxble functxons (24) in this integral. Writing henceforth ¢, rather than &, the basic
function of the plan (£,, &,), we find

3
= ‘JI z “le{ J‘J‘ak‘bal(bTRukl\/adfl d‘.\l}T u
i1 k=1
The elements R, ;, of the matrix R;;depend in a nonlinear way, on the geometry of the surface.
In order to enable us to effect the numerical integration once and for all, we interpolate
this functions as follows
Rs jkz(f)\/ [a(f)] = z Rijkz(l p)\/ [a(l p)]gp((f) (32)
p=1
where 0, are Lagrangian polynomials of interpolation, relative to the points I, of the unit
triangle and £ stands for &, , £,. The contribution of the element to the strain energy becomes
then
3 6 mo
AU, = |J| Z uiTT{ Z Z Rijkl(Ip)\/[a(Ip)]lep} TT“j (33)
Lj=1 ki=1p=1

where Gy, are the matrices

Guy = [ [ abl0d7 @00 a1 ey (34)

which depend on the choice of the basic functions and the Lagrangian polynomials. For a
given set of such functions, these integrals may be computed once and for all. Finally, the
stiffness matrix of the element is defined by the relation

3
AU, =J] 3 ofTQ,TTu,,
=1
with

6 m
i = kZ Zl Rl W 1aU )IGy, 35)

JA=1p=

6. PRACTICAL ASPECTS OF COMPUTATION

Practically an element of shell is defined by its coordinates in the plane (x,, x,), its
vector z and the thickness on the vertices.

We make use of Lagrangzan polynomials of the third order, relative to the 10 points
of interpolation shown in Fig. 3. At each such point, we have to form the matrices A;, B,
(i = 1,2, 3) and K entirely defined by the geometry of the element. For this purpose, we
compute the values of the function z and its derivatives at these points from the basic
functions and the vector z. We get then the matrices R,;, from which we draw the stiffness
matrix.
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FiG. 3.

To estimate numerically the integrals G,,,, we use the 7-points formula given in [23].
We found a satisfying accuracy on using these formulas on 64 sub-triangles by dividing
each side of the unit triangle in 8 equal parts. Those coefficients are computed once and
for all and kept on a tape.

The interpolation of functions R;;, by means of the polynomials 0, yields that rigid-
body motions cannot be represented exactly. However, some numerical experiments show
that we get a very good approximation with the 10 points mentioned below, as soon as
the mesh is rather fine (see [24]).

This element of shell has been introduced in a general purpose program, developed
for the IBM 7040 computer of the EPFL (see [22]). This program deals with the formation
of the master stiffness matrix and right-hand side of the structure, taking account of the
boundary conditions; with the solving of the linear equations and the computation of
stresses. One can introduce any linear conditions between the degrees of freedom of the
structure and assembie elements of various kinds such as beam, plate, shell, etc. For the
elements of shell, the program computes the physical components of in-plane and bending
stresses at the corners and in the middle of the element. With the T3 basic functions, the
stresses are not continued at the nodes; in that case, one computes the average stresses at
a node from the elements admitting this node for vertex.

7. NUMERICAL EXAMPLE

We consider the shell shown in Fig. 4; it is defined by the equation z = 5-x{/20,
—-10 < x; <10, =10 < x, < 10; its uniform thickness is h = 0-2, and the elastic coeffi-
cients are E = 2x 107, v = 0-15.

This cylinder is supported along the edges x, = + 10, in such a way that we have
u; = uy = 0;itis free along the edges x; = + 10. We propose to settle the field of displace-
ment and the state of stress under a uniform pressure p; = — I.

We have computed the quarter of the shell, with the three meshes shown in Fig. 5 and
the three types of basic functions T1, T2 and T3. Some characteristic numerical results
are given in Tables 5 and 6. From these results, we can draw the following conclusions:

1. With a coarse mesh, the elements T1 generally give a better approximation than the
elements T2. The results are almost the same when the mesh becomes fine.

2. The elements T3 which have only 9 degrees of freedom at each node, instead of 13
for T1 and T2, lead to worse numerical results for a given time of computation.

3. If the mathematical model only requires basic functions of class C', the elements

T2 seems to be the best one.



TABLE 5

Mesh 1 Mesh 2 Mesh 3
[Fig. 5(a)] [Fig. 5(b)] [Fig. 5(c)]
Elements
Point b T1 T2 T3 Tt T2 T3 Tt 72 T3
is-
placement

A uy x 107 0-842 0-731 0476 0-772 0-760 0-722 0-7663 0-7662 0.7613
uy x 107 - 1117 —0:999 —~0-658 —1-039 - 1024 —0975 —1-0315 —1-0315 - 10251
B uy x 10% 0110 0-130 0-087 0-114 0-115 0-112 0-1144 0-1146 0-1143
uy x 102 -0-165 —0203 —0-143 -0-175 ~0-177 —0-174 —0-1759 —0-1761 ~(-1760
C uy x 107 0-155 0-179 0-109 0159 0-160 0-155 0-1594 0-1596 0-1589

S[[PYS J1)SE[2 LI} 1O] JUAWIS}S S}UY PAAIRO V

a4
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8 °¢L -
) w
A
J - R et X
L |
{ 20 =1
FiG. 4.
TABLE 6
Mesh 1 Mesh 2 Mesh 3
[Fig. S(a)] [Fig. 5(b}] [Fig. 5(c)]
Elements
Point T2 T3 T2 T3 T2 T3
Stress
y M2y 2800 125.7 272.2 2289 2724 2616
a2, 373 2:38 373 363 374 393
B B2y —-69-2 —42-4 —~ 692 - 669 —69-8 - 69.3
Mgz, 078 097 025 0-56 021 0-30
c Mz2) 551 649 481 579 48-0 50-6

M2 103 ~082 ~1.08 - 104 ~1.06 ~ 101
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A B c
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A 8 c
{b)
A 8 C
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Résumé—Cet article concerne un élément fini de coque, triangulaire, courbe qui permet de représenter exactement
les déplacements rigides et assure la convergence en énergie. La matrice de rigidité est obtenue de telle lmaniére
que les calculs sont valables pour tous les modéles mathématiques construits 4 partir de ’hypothése dg Kirchhoff.
Un exemple numérique indique la qualité des résultats obtenus avec 9 ou 18 degrés de liberté associés 4 chaque
noeuds du réseau et des fonctions de base de classe C' ou C*.

Abcrpat—PaboTa KacaeTcs PacyeTa KPUBOIMHEHHOro TPEXYroMBHOIC KOHEYHOrO IEMEHTA oB0n0YKH,
KOTODBI ONPENENSeT TOYHO ABIKEHHE KECTKOTO TeNd M 0GecneunBacT CXOAMMOCTE B BRIDRMCHUH UM
steprud. OGMIHM TyTeM BBIBOJHTCS MATPMUA KOXDPUUMEHTOB JKECTKOCTH, YTO MBISETCH BAXHBIM s
BCex MaTeMaTHYeCKHX Mozened B obmacTy npumenesna npeanonoxenns Kupxropda. Haercs YUCACHHBIR
NPHMeED € HENBIO YKA3aHUS KAHECTBEHHOHN CTOPOHBI Pe3yIETATOR, KOTOPHIE MOXHO MOJYYHTE M4 9 umm 18
creneHelt cBOBOMM B KaXAOH TOYKE CETKH M OCHOBHBIX dyHkumit kmacca C' wm C2.



